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1 Introduction

Learning an input-output relation from examples can be considered as the
problem of approximating an unknown function f(x) from a set of sparse
data points (Poggio and Girosi, 1989). From this point of view, feedforward
networks are equivalent to a parametric approximating function F(W, x). As
an example, consider a feedforward network, of the backpropagation type,
with one hidden layer; the vector W corresponds, then, to the two sets of
"weights," from the input to the hidden layer, and from the hidden layer
to the output. Even before considering the problem of how to find the ap-
propriate values of W for the set of data, the fundamental representational
problem must be approached: which class of mappings f can be approxi-
mated by F, and how well? The neural network field has recently seen an
increasing awareness of this problem. Several results have been published,
all showing that backpropagation networks of different form and complex-
ity can approximate arbitrarily well a continuous function, provided that
an arbitrarily large number of units is available (Cybenko, 1989; Funahashi,
1989; Moore and Poggio, 1988; Stinchcombe and White, 1989; Carrol and
Dickinson, 1989). This property is shared by algebraic and trigonometric
polynomials, as is shown by the classical Weierstrass Thenrem, and for this
reason we shall refer to it as the Weierstrass property. It is important, how-
ever, to realize that results of this type should not be taken to mean that
the approximation scheme is a "good" approximation scheme. An indication
of the latter point is provided, in the case of backpropagation, by a closer
look at the published results. Taken together, they imply that almost any
nonlinearity at the hidden layer level and a variety of different architectures
(one or more hidden layers, for instance) insures the Weierstrass property
(Funahashi, 1989; Cybenko, 1989; Stinchcombe and White, 1989). There
is nothing special about sigmoids, and in fact many classical approximation
schemes exist that can be represented as a network with a hidden layer and
that exhibit the Weierstrass property. In a sense this property is not very
useful for characterizing approximation schemes, since many schemes have it.
Literature in the field of approximation theory reflects this situation, since
it emphasizes other properties in characterizing approximation schemes. In
particular, a critical concept is that of best approximation. An approximation
scheme has the best approximation property if in the set A of approximating
functions (for instance the set F(W, x) spanned by parameters W) there is
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one that has minimum distance from any given function of a larger set I, (a
more formal definition is given later). Several questions can be asked, such
as the existence, uniqueness, computability, etc., of the best approximation.

In this paper, we show that feedforward multilayer networks of the back-
propagation type (Rumelhart et al., 1986, 1986a; Sejnowski and Rosenberg,
1987) do not have the best approximation property for the class of contin-
uous functions defined on a subset of Rn. On the other hand, we prove
that for networks derived from regularization, and in particular for radial
basis function networks, best approximation exists and is unique. We also
prove that these networks approximate arbitrarily well continuous functions
(see Appendix B and C). We have recently shown that radial basis function
approximation schemes can be derived from regularization and are there-
fore equivalent to generalized (radial) splines (Poggio and Girosi, 1989). For
Radial Basis Function networks we prove existence and uniquneqs of best
approximation.

1

The plan of the paper is as follows. We first formalize the previous argu-
ments, then introduce some basic notions from approximation theory. Next,
we prove that multilayer networks of the backpropagation type do not have
the best approximation property, and that networks obtained from regular-
ization theory have this property. In the last section, we discuss the im-
plications of these results and list some open questions. Appendix B proves
that the Stone-Weierstrass theorem holds for Gaussian Radial Basis Function
networks (with different variances). In appendix C we prove a more general
result: regularization networks approximate arbitrarily well any continuous
function on a compact subset of Jr.

2 Most networks approximate continuous func-
tions

In recent years there have been attempts to find a mathematical justification
for the use of feedforward multilayer networks of the backpropagation type.
Typical results deal with the possibility, given a network, of approximating

'The theory has been extended by introducing the more general schemes of GRBF and
HyperBF, which can be considered as the network equivalent of generalized multidimen-
sional splines with free knots.
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any continuous function arbitrarily well. In mathematical terms this means
that the set of functions that can be computed by the network is dense (see
Appendix A) in the space of the continous functions C[U] defined on some
subset U of R'. The most recent results (Cybenko, 1989; Funahashi, 1989;
Stinchcombe and White, 1989) consider networks with just one layer of hid-
den units, that correspond to the following class of approximating functions:

In

E M {f E C[U] I f(x) = cir(x.w,+,), U C Rd wi E R',c,O, E R,m E N}
i=1

(1)
where a is a continuous function. Depending on a*, the set E may or may not
be dense in the space of the continuous functions. The set V of functions or
such that E is dense seems to be large. For instance, the sigmoidal functions,
that is functions such that

lim a(t) = 1t-.+oe

lim a(t) = 0

belong to V (Cybenko, 1989; Funahashi, 1989). Many other types of func-
tions in D can be found in the paper of Cybenko (1989). The set V has been
recently extended by the result of Stinchcombe and White (1989). In fact
they prove that it contains all the functions whose mean value is different
from zero and whose Lp-norm is finite for 1 < p < oo.

Other networks can be built, such that the corresponding set of approx-
imating functions is dense in C[U]. Consider for example the network in
figure 1. This is the most general network with one layer of hidden units,
and the class of approximating functions corresponding to it is

m
A( =fE C[U]lf(x) = 1" c,H,(x),U c Rd,H, E C[U],m E N). (2)

The function Hi are of the form Hi = H(x; W,), where Wi is a vector of
unknown parameters in some multidimensional space and H is a continu-
ous function. If the Hi are appropriately chosen the set X can be dense in
C[U]. For example the Hi could be algebric or trigonometric polynomials,
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Figure 1: The most general network with one layer of hidden units. Here
we show the two-dimensional case, in which x = (z, y). Each function Hi
can depend on a set of unknown parameters, that are computed during the
learning phase, as well as the coefficients ci. When Hi = o(x. wi + Oi) a
network of the backpropagation type is recovered, while Hi = H(Ilx - till)
corresponds to RBF or GRBF scheme (Broomhead and Lowe, 1988; Poggio
and Girosi, 1989).
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and in this case the denseness of N would be a trivial consequence of the
Stone-Weierstrass theorem (see Appendix B). This theorem allows a signifi-
cant extension of the set of "basis" functions Hi. Appendix B gives another
example, showing how Gaussian functions of radial argument (and different
variances) can be used to approximate any continuous function. Appendix
C provides a more powerful result showing that all networks derived from
regularization theory can approximate arbitrarily well continuous functions
on a compact subset of R1. This result includes, in particular, Radial Basis
Functions networks with the radial basis function being the Green's function
of a self-adjoint differential operator associated to the Tikhonov stabilizer.
Such Green's functions include most of the known approximation schemes,
such as the Gaussian and several types of splines and many functions, but
not all functions, that satisfy some sufficient conditions given by Micchelli
(1986) in order to be interpolating functions.

Since a large number of networks can approximate arbitrarily well any
continuous functions, it is natural to ask whether this property is really
important from the point of view of approximation theory, and whether other
more fundamental properties can be characterized. As we mentioned already,
one of the basic properties that an approximating set should have is the best
approximation property, that guarantees that the approximation problem
has a solution. The next section focuses our attention on the relationship
between this property and different kind of networks, since this seems to be
a more appropriate starting point for a complete analysis of the networks
performances from a rigorous mathematical point of view.

3 Basic facts in approximation theory

3.1 The best approximation property
An informal formulation of the approximation problem can be stated as fol-
lows: given a function f belonging to some prescribed set of functions 4, and
given a subset A of 4$, find the element a of A that is the "closest" to f.

In order to give this formulation a precise mathematical meaning, some
definitions are needed. First of all a notion of "distance" has to be introduced
on the set $. Since this set is usually assumed to be a normed linear space,
with norm indicated by II jI, the distance d(f,g) between two elements f
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and g of '1 is naturally defined as IIf - gil. Given f E 0 and A C 4 we can
now define the distance of f from A as

d(f, A) - inf IIf - all. (3)
aEA

If the infimum of IlI - all is attained for some element a0 of A, that is if
there exists an ao E A such that Ilf - aoll = d(f, A), this element is said
to be a best approximation to f from A. A set A is called an existence set
(uniqueness set, resp.) if, to each f E 4, there is at least (at most, resp.)
one best approximation to f from A. If the set A is an existence set we will
also say that it has the best approximation property. A set A is called a
Tchebycheff set if it is an existence set and a uniqueness set. We are now
ready to give a precise formulation of the approximation problem:

Approximation problem: given f E 0 and A C D find a best approx-
imation to f from A.

From the definition above it is clear that the approximation problem has
a solution if and only if A is an existence set, and a large part of approxi-
mation theory has been devoted to proving existence theorems, which give
sufficient conditions to guarantee existence and possibly uniqueness of closest
points. We will only present very simple properties of sets with the best ap-
proximation property, and will apply these result to network architectures, in
order to understand their properties from the point of view of approximation
theory.

We begin with the following observation:

Proposition 3.1 Every existence set is closed.

Proof. Let A C 0 be an existence set, and suppose that it is not closed.
Then there is a sequence {a.} of elements of A that converges to an element
f that is not in A, that is there exists an f E 4\A such that

lim d(f, a,,) = 0
n-,-*oo

This means that d(f, A) = 0, and since A is an existence set there is an
element a0 E A such that Ilf - ao0I = 0. By the properties of the norm this
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implies that f = aO, which is absurd because f V A and a0 E A. Then A
must be closed. 0

The converse of this proposition is not true, that is closedness is not
sufficient for a set to be an existence set. However the stronger condition of
compactness is sufficient, as the following theorem shows.

Theorem 3.1 Let A be a compact set in a metric space 0. Then A is an
existence set.

Proof. For each f E ' the distance d(f, a), with a E A, is a continuous
real valued function defined on the compact set A. From theorem A.2 of
Appendix A it attains its maximum and minimum value on this set and this
concludes the proof. 0

In the next section we apply these simple results to some network archi-
tectures.

4 Networks and approximation theory

From the point of view of approximation theory a feedforward network is a
representation of a set A of parametric functions, and the learning algorithm
corresponds to the search of the best approximation to some target function
f from A. Since in general a best approximation does not exist unless the
set A has some properties (see, for instance, theorem 3.1), it is of interest to
understand which classes of networks have these properties.

4.1 Backpropagation does not have the best approx-
imation property

Here we consider the class of networks of the backpropagation type with one
layer of hidden units. The space , of functions that have to be approximated
is chosen to be C[U], the set of continuous functions defined on a subset U
of R' with some unspecified norm. If the number of hidden units is m, the
functions that can be computed by such networks belong to the following set
a~m:

m-{f E C[U] I f(x) = ac(x.wi + Oi),wi E Rd, ci,eO E R} (4)
i=1
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where a(x) is usually a sigmoidal function. We now show that orm is not
an existence set, and this does not the depend on the norm that has been
chosen. The result is proved in the case of or being a sigmoid and for one
hidden layer, a(x) = (1 + e-x)-1 , but it holds for every other non trivial
choice of nonlinear function and for networks with more than one hidden
layer.

Proposition 4.1 The set 'rn is not an existence set for m > 2.

Proof. A necessary condition for a set to be an existence set is to be
closed. Therefore it is sufficient to show that rn is not closed, and this can
be done by showing an accumulation point that does not belong to it. Let
us consider the following function:

f 6(x) 1 + e-lw'x+l- 1 + -Iw"x+(O+b))

Clearly f6 E aU,Vm > 2, but it easily seen that

lif6 (x) = 2(1 + cosh[w x + 0])0 6-0

and g V t ' , Vm > 2. For each m > 2 the function g is then an accumulation
point of rn but does not belong to it: rn can not be closed and this concludes
the proof. 0
This result reflects a general fact in non linear approximation theory: usually
the set of approximating functions is not closed, and its closure must be added
to it in order to obtain an existence set. This is the case, for instance, for the
approximation by -y-polynomials in one dimension, that are replaced by the
extended y-polynomials, to guarantee the existence of a best approximating
element (Braess, 1986; Rice, 1964, 1969; Hobby and Rice, 1967; De Boor,
1969).

4.2 Existence and uniqueness of best approximation
for regularization and RBF

One of the possible approaches to the problem of surface reconstruction is
given by regularization theory (Tikhonov and Arsenin, 1977; Bertero et al.
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1988). Poggio and Girosi (1989) have shown that the solution obtained by
means of this method maps into a class of networks with one hidden layer
(an instance of which are Radial Basis Function networks or RBF). In fact
the solution can always be written in the parametric form:

f(x) = c,,(x) (5)

where the ci are unknown, m is the nuniber of data points and the €i are
fixed, depending on the nature of the problem and on the data points. More
precisely the "basis function" Oi is of the form Oi(x) = G(x; xi), where x;
is a data point and G is the Green's function of some (pseudo)differential
operator P (a term belonging to the null space of P can also appear, see
Appendix C). In the particular case of radial function G = G(Tlx - xiIl) the
RBF method is recovered, and the solution of the approximation problem is
then a linear superposition of radial Green's functions G "centered" on the
data points.

Notice that this function can be computed by a network that is a special
case of the one represented in figure 1. The main difference is that in the
general case the functions Gi depend on unknown parameters, while in the
regularization context only the coefficient ci are unknown.

Equation 5 means that the approximated solution belongs to the subset
T7 ' of C[U]:

T" - {I fE C[U] I f(x) = q,(x), c E R} (6)
i=1

Since we have shown that the set of approximating functions associated with
networks with one hidden layer of the backpropagation type does not have
the best approximation property, it is natural to ask whether or not the set
T' has this property 2. The answer is positive, as is stated in the following
proposition:

Proposition 4.2 The set T' is an existence set for m > 1
2Notice that backpropagation cannot be derived from any regularization scheme since

it cannot be written as the linear superposition of Green's functions of any kind.
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Proof. Let f be a prescribed element of C[U], and let ao be an arbitrary
point of T'. We are looking for the closest point to f in T'. It has to lie in
the set

{a E 7' 1 Ila - fI 1S <Iao - f l}.

This set is clearly closed and bounded, and by theorem A.1 it is compact.
The best approximation property comes from theorem 3.1. 0

From this proposition we can see that every time that the approximat-
ing function is a finite linear combination of basis functions, the set that is
spanned by these basis functions is an existence set for C[U]. Depending
on the norm that is chosen in C[U] the best approximating element can be
unique. In fact the following theorem holds (see Appendix A for the definition
of strictly convex):

Proposition 4.3 The set T-, rn > 1 is a Tchebycheff set if the normed
space C[U] is strictly convex.

Proof. The existence has already been proved. Suppose then that there are
two best approximating elements f and f' from T ' to a function g E C[U].
Let A be the distance of g from Tn. Applying the triangular inequality we

* obtain:

II (f + f') - gl : Ilf - gl + llf'- gl= (7)

Since T' is a vector space, then 2(f + f') E T- and by definition of A it
follows that 11(f+f')II > A. This implies that the equality holds in equation
7. If A = 0 it is clear that f = f' = g. If A # 0, then we can write equation
7as

11 F-g) + Afg)1 (8)

A' A

but since stricty convexity holds, then f = f'. 0
Since it is well known that C[U with the Lp-norms, 1 < p < oo is strictly
convex (Rice, 1964), we have then shown that in most cases regularization
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theory gives an approximating set with the best approximation property and
with a unique best approximating element.

5 Conclusions

5.1 GRBF and Best Approximation
We have recently extended the scheme of equation 5 to the case in which
the number of basis functions is less than the number of data points (Poggio
and Girosi, 1989; Broomhead and Lowe, 1988). The reason for this is that
when the number of data points becomes large the complexity of the network
may become too high, being proportional to the number of data points. A
solution to the approximation problem is sought of the form:

n

f(x) - ciG(x; ti) (9)

where n is smaller than the number of data points and the positions of the
"centers" t, of the expansion are unknown, having to be found during the
learning stage. Does the best approximation property hold for this approx-
imation scheme, that we call Generalized Radial Basis Function (GBRF)
method? The answer is no, exactly as for splines with free knots, to which
equation 9 is in fact equivalent. By the same arguments we have used in
section 4.1 we could show that the set Gn of approximating functions gener-
ated by equation 9 (the analogous of the set Tn) is not closed. The scheme,
however, has almost the best approximation property in the following sense.
The scheme already works satisfactorily if the centers t, are fixed to a subset
of examples or other positions. In this case Gn is a linear space, and it is
an existence set, as well as T'. We could then have an algorithm in which
first the centers are found independently (for instance by the K-means al-
gorithm, see Moody and Darken, 1989) and then the cj are obtained with
gradient descent methods (see Poggio and Girosi, 1989). In this scheme the
best approximation property is preserved, while the computational complex-
ity has been reduced with respect to the exact solution of the regularization
problem.

There are other ways to make GRBF a best approximation. The most
interesting approach is to follow the theory of -y-polynomials (Braess, 1986;
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Rice, 1964, 1969; Hobby and Rice, 1967; De Boor, 1969) and complete the
sets of basis functions with its closure, consisting of an appropriate number
of derivatives of the Green's function with respect to its parameters, yielding
a best approximation scheme. It seems very difficult to use either of these
two approaches for backpropagation networks.

5.2 Open Questions
We have not explored the practical consequences of the fact that backprop-
agation is not best approximation. Intuitively, it seems that the lack of the
best approximation property is related to possible practical degeneracies of
the solution. In certain situations, because of the fact that the sigmoid,
which is asymptotically constant, contains as an argument one set of pa-
rameters (the wj), the precise values of these parameters may not have any
significant effect on the output of the network. The same situation happens
for GRBF when the centers inside the Green's function are unknown. In the
GRBF case, however, we can freeze the t, to reasonable values whereas this
is impossible in the backpropagation case.

Other questions remain open as well. The most important questions
from the viewpoint of approximation theory are: (1) the computation of the
best approximation, i.e., which algorithm to use, (2) a priori bounds on the
goodness of the approximation given some generic information on the class
of functions to be approximated, and (3) a priori estimates of the complexity
of the best approximation, again given generic information on the class of
functions to be approximated. In the case of RBF, the latter question is
directly related to the size of the required training set, and therefore to the
deep issue of sample complexity (see Poggio and Girosi, 1989, section 9.3).
About problems 1) and 2) notice that in practical cases it may be admissible
to use a scheme which is not best approximation, if it provides an almost as
good approximation at a much lower computational cost.

Acknowledgments We are grateful to G. Palm and E. Grimson for
useful suggestions.
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A Definitions and basic theorems

We review here some of the definitions that have been used in the paper.
Every set will be assumed to have the structure of metric space, unless dif-
ferently specified, and the concepts of limit point, infimum and supremrnum
are assumed to be known. All these definitions and theorems can be found
in any standard text on functional analysis (Yosida, 1974; Rudin, 1973) and
in many books on approximation theory (Braess, 1986; Cheney, 1981).

An important concept is that of closure:

Definition A.1 If S is a set of dements, then by the closure [S] of S we
mean the set of all points in S together with the set of all limit points of S.

We can now define the closed sets as following:

Definition A.2 A set S is closed if it is coincident with its closure [S].

A closed set then contains all its limit points. Another important definition
related to the concept of closure is that of dense sets:

Definition A.3 Let Ta subset of the set S. T is dense in S if [T] = S.

If T is dense in S then each element of S can be approximated arbitrarily well
by elements of T. As an example we mention the set of rational numbers,
that is dense in the set of real numbers, and the set of polynomials that is
dense in the space of continuous functions (see appendix B).

In order to extend some properties of the real valued functions defined on
an interval to real valued functions defined on more complex metric spaces
it is fundamental to define the compact sets:

Definition A.4 A compact set is one in which every infinite subset contains
at least one limit point.

It can be shown that, in finite dimensional metric spaces, there exists a simple
characterization of compacts sets. In fact the following theorem holds:

Theorem A.1 Every dosed, bounded, finite-dimensional set in a metric lin-
ear space is compact.

13



The well known Weierstrass theorem on the attainment of the extrema of a
continuous function on an interval can now be extended as following:

Theorem A.2 A continuous real valued function defined on a compact set
in a metric space achieves its infimum and supremum on that set.

A subset of the metric spaces is given by the normed spaces, and among the
normed spaces, a special role is played by the strictly convex spaces:

Definition A.5 A normed space is strictly convex if:

IlfI1 = IIg~l = IIl(f + g)I = 1 =o f = g

The geometrical interpretation of this definition is that a space is strictly
convex if the unit sphere does not contain any line segment on its surface.

B Gaussian networks and Stone's theorem
It has been proved (Cybenko, 1989; Funahashi, 1989) that a network with a
one hidden layer of sigmoidal units can approximate a continuous function
arbitrarily well. Here we show that this property, which is well known for
algebraic and trigonometric polynomial approximation schemes, is shared by
a network with Gaussian hidden units. The proof is a simple application of
the Stone-Weierstrass theorem, which is the generalization given by Stone of
the Weierstrass approximation theorem (Stone, 1937, 1948). Our result was
obtained independently from the equivalent proof of Hartman, Keeler and
Kowalski (1989). We first need the definitions of algebra.

Definition B.1 An algebra is a set of elements denoted by Y, together with
a scalar field .", which is closed under the binary operators of + (addition
between elements of Y), x (multiplication of elements of Y), (multipli-
cation of elements in Y by elements from the scalar field F), such that

1. Y together with Y', + and • forms a linear space,

2. if f, g, h are in Y, a is in )r, then

a. f xgisinY,
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b. f x(gxh)=(f xg)xh,

c. fx(s+h)=fxg+fxh,

d. (f+g)xh=fxh+gxh,

e. c(f x g) = (of) x g = f x (as).

It is an ementary calculation to show that if U is some subsect of R" then
C[U] is an algebra with respect to the scalar field R. We can now define a
subalgebra as following:

Definition B.2 A set S is a subalebra of the algebra y if

1. S is a linear subspce of y,

2. S is closed under the operation x . That me if f and 9 i S.
then f x g is also in S.

We can now formulate the Stone's theorem:

Theorem B.1 (Stone, 1937) Let X be a compact metric space, C[X] the
set of continuous functions defined on X, and A a subalgebra of C[XJ with
the following two properties:

1. the function f(z) = 1 belongs to A;

2. for any two distinct points z and y in X there is a function f E A such
that f(x) # f(y).

Then A is dense in C[X].

As a simple application of this theorem we consider the set of gaussian su-
perpositions, defined as

x-{fEC[X]f(X) ,ce , ,X C R, ti E Rd,c,0 E R, m E N}

(10)
We can now enunciate the following:



Proposition B.1 The set gx is dense in C[X], where X is a compact subset
of Rd.

Proof: In order to use Stone's therorem, we first have to show that 9x
is a subalgebra of C[X], for each compact subset X of Rd. The set 9x
will be a subalgebra of C[X] if the product of two of its elements yields
another element of gx. Since gx is a linear superposition of gaussians of
different variance and centered on different points it is sufficient to deal with
the product of two gaussians. From the identity below it follows that the
product of two gaussians centered on two points t1 and t2 is proportional to
a Gaussian centered on a point t 3 that is a convex linear combination of t1
and t2. In fact we have:

e '1 *e 2 -ce 3

S 1ot + o22  2 a 22 _.
_____ ___ _0"1 2

The function f(x) = 1 belongs to Cx, since it can be considered as gaussian
of infinite variance, and for any distinct points x, y we can obviously find a
function in gx such that f(x) # f(y): the conditions of Stone's theorem are
then satisfied and 9x is dense in C[X] 3.

C Regularization networks can approximate
smooth functions arbitrarily well

In this appendix we briefly describe the regularization method for approxi-
mating functions and show that the networks that are derived from a reg-
ularization principle can approximate arbitrarily well continuous functions
defined on a compact subset of R".

Let S = {(xi, Yi) E R" x Rli = 1,...N} be a set of data that we want to ap-
proximate by means of a function f. The regularization approach (Tikhonov,
1963; Tikhonov and Arsenin, 1977; Morozov, 1984; Bertero, 1986) consists
in computing the function f that minimizes the functional

16



N
H[f] = "(y, - f(x,))2 + \IIPf 112

iml

where P is a constraint operator (usually a differential operator), 1 . 112 is
a norm on the function space to whom Pf belongs (usually the L2 norm)
and A is a positive real number, the so called regularization parameter. The
structure of the operator P embodies the a priori knowledge about the solu-
tion, and therefore depends on the nature of the particular problem that has
to be solved. The general form of the solution of this variational problem is
given by the following expansion (Poggio and Girosi, 1989):

N

f(x) = c. G(x; xi) + p(x) (11)

where G is the Green's function of the differential operator PP, P being the
adjoint operator of P, p(x) is a linear combination of functions that span the
null space of P, and the coefficients cj can be found by inverting a matrix that
depends on the data points (Poggio and Girosi, 1989). We remind the reader
that the Green's function of an operator PP is the function that satisfies the
following differential equation (in the distributions sense):

PP G(x;y) = (x - y). (12)

It is clear that there is a correspondence between the class of functions that
can be written in the form (11) (for any number of data points and for any
Green's functions G of a self-adjoint operator) and a subclass of feedforward
networks with one layer of hidden units, of the type shown in figure 1. Un-
der mild assumptions on PP, these networks can approximate continuous
functions arbitrarily well, as is stated in the following proposition:

Proposition C.1 For every continuous function F defined on a compact
subset of R" and every piecewise continuous G which is the Green's func-
tion of a self-adjoint differential operator, there ezists a function f*(x) -

,IZ. ciG(x; x), such that for all x and any positive e the following inequality
holds:

IF(x) - fP(x)l <e

17



Proof: Let F be a continuous function defined on a compact set D C R n .

Its domain of definition can be extended to all R n by assigning zero value to
all points that do not belong to D. The resulting function, that we still call
F, is a continous function with bounded support 3. Consider the space K of
"test functions" (Gelfand and Shilov, 1964), that consists of real functions
Ob(x) with continuous derivatives of all orders and with bounded support
(which means that the function and all its derivatives vanish outside of some
bounded region). As Gelfand and Shilov show (Appendix 1.1), there always
exists a function O(x) in K arbitrarily close to F, i.e. , such that for all x
and for any e > 0,

IF(x) - O(x)l < e.

Thus it is sufficient to show that every function O(x) E K can be ap-
proximated arbitrarily well by a linear superposition of Green's functions
(function f* of proposition C.1).

We start with the identity

= Jdy(y)6(x - y) (13)

where the integral is actually taken only over the bounded region in which
O (x) fails to vanish. By means of equation 12 we obtain

OWx= I dyOb(y)(PPG)(x;y) (14)

and since Ob(x) is in K and PP is formally self-adjoint we have

O(X) = I dyG(x;y)(PPO)(y). (15)

We can rewrite equation 15 as

O(x) = dyG(x;y)(y) (16)

where O(x) = PPO(x). Since G(x; y)O(y) is piecewise continuous on a
closed domain, this integral exists in the sense of Riemann. By definition of
Riemann integral, equation 16 can then be written as

'The support of a continuous function F(x) is the closure of the set on which F(x) # 0.

18
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O(x) = A" E v,(x)G(x; x,) + E(A) (17)
kel

where Xk are points of a square grid of spacing A, I is the finite set of
lattice points where O(x) & 0, and Ex(A) is the discretization error, with
the property

lim Ex(A) = 0. (18)
A-e#O

If we now choose rf(x) = A" ~ej O(xk)G(x; xk), combining equation 18
and equation 17 we obtain

iim[O(x) - j*(x)] = 0. (19)

Thus every function 4 E K can be approximated arbitrarily well by a lin-
ear superposition of Green's functions G of a self-adjoint operator, and this
concludes the proof 0.

Remark. The conditions of proposition C.1 exclude Green's functions
that have singularities in the origin. An example is the Green's function
associated with the "membrane" stabilizer P = I in 2 or more dimensions.
In 2 dimensions, the membrane Green's function is G(r) = -logr, where
r = Ijx-xI1 (in I dimension G(z) = Ix1, satisfies the conditions of proposition
C.1).

Remark Notice that in order to approximate arbitrarily well any conti-
nous function on a compact domain with functions of the type 11, it is not
necessary to include the term p belonging to the null space of P.
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